Effective communication and cartography

I have been thinking a lot recently about using maps as effective tools for visual communication of data. Chen et al. (2014) wrote that visualization of data should be about getting your message across in a time-efficient manner, which Kent (2005) stated depends upon producing aesthetically pleasing results. All maps (being one form of data visualization) are imperfect models of the world (as all models are imperfect) and we must take care to make sure that our maps communicate the messages we wish to express effectively.

Without wishing to get unduly political, I want to work through these ideas using the example of this summer’s “Brexit” vote. Data on the referendum results can be found here and data on UK boundary lines here. There are many (infinite?) different potential ways of visualising this data spatially, but I am going to explain the messages I see in a few examples here.

First up, we have a simple rendering of the results using the district divisions by which the data was originally counted and parcelled up, in which the saturation of the yellows (remain) and blues (leave) show the percentage lead each vote had in districts which each side “won”:

1_brexit_percent

Yellow and blue have been used as that seems to be the convention settled on by most of our media. This map shows which areas felt particularly strongly one way or the other about the question asked and works well in that regard. However, it also gives a somewhat misleading message, as some of the high value districts are of relatively low population density. As an alternative then, we can keep the same division into “leaver” and “remainer” districts, but instead use the shading to show population density:

2_brexit_density

This map loses the nuance of showing how strong the vote was in either direction, but gains something by showing which districts have more people living in them. Most notable is the stark difference between the districts in eastern England around The Wash, which are of low population density (for the UK!), but which felt very strongly that the UK should leave the EU.

We can also look at the result in much more stark terms. The recent High Court decision has increased the likelihood of their being a Parliamentary vote on invoking Article 50, so I wanted to see which way the various constiuencies fell in terms of “leave” or “remain”. This is not simple, however, as the results were reported using districts, which often do not match constiuencies. As such, I reapportioned the vote from districts between consituencies on the basis of spatial area (e.g. if a constiuency covered half a district, it would receive half the votes). This is imperfect, as population density is not uniform across any district, but was the best I could do with the data to hand. The results show that, if Parliament does get to vote on Article 50 and MPs vote as their constituents voted, then “Leave” will comfortably win (Northern Ireland has not been included, but does not have enough MPs to make a difference either way):

3_brexit_constituency

All of these maps work reasonably well at expressing one element of the data, but I wanted to come up with a visualization that produced a more complex picture of the results yet without abandoning geographic space (i.e. I did not want to use a cartogram):

4_brexit_hexes

This final map reworks the results into hexagonal spatial bins, using the same method as when I reworked the results into constiuencies (i.e. assignment by spatial area overlap). Here, the blue / yellow shading has returned to showing the strength of the result, but we can now also see data on population at the same time through the thickness / blackness of the lines around the hexagons. I feel that this map does a pretty good job of showing the distribution of the vote (spatially, strength-wise, and population-wise) whilst still allowing people to locate themselves reasonably well geographically (which would not be the case with a cartogram). Hexagons have been preferred over squares largely to their visual appeal and due to the fact that humans have a tendency to see false straight lines in data binned into square-based grids.

Whatever you think of the referendum result, I hope that my worked example has helped to explain how making a map is not always a simple task. Careful thought about audience, message, and data structure needs to go into any visualisation if effective communication is to be achieved. I hope that my final map succeeds in that task!

Chris Green

References

Chen, M., L. Floridi, and R. Borgo. 2014. What is visualization really for? The Philosophy of Information Quality. Springer Synthese Library Volume 358, 75-93

Kent, A.J. 2005. Aesthetics: a lost cause in cartographic theory? Cartographic Journal 42(2), 182-188

All maps contain Ordance Survey data (C) Crown copyright and database right 2016

New paper: modelling mass data

Our new paper has just gone up for online first access. It’s available here if you have access to the Archaeological Journal via a library / university:

http://www.tandfonline.com/doi/full/10.1080/00665983.2016.1230436

It’s about our experiments in modelling EngLaID datasets on a broad scale, with a mild focus on population density. It also covers some issues discussed here (Affordance; Pottery I, II).

Playing with Ptolemy

Ever since I was an undergraduate (and attempted to write a “mental geography” of Roman Britain for my dissertation), I have been interested in Claudius Ptolemy’s Geography. Ptolemy was an Alexandrian Greek and his Geography dates to the mid second century AD: it contains coordinates from which it is possible to make maps of the entire known world at that time, including data representing the earliest surviving reasonably accurate survey of the British Isles. For the purposes of the EngLaId Atlas, that I am currently working on, I decided to see if I could plot Ptolemy’s Britain (or Albion as he called it) over the modern OS map.

To do so, I copied out the coordinates for Ptolemy’s places (representing points along coastlines, islands, and major settlements) from Rivet & Smith 1979. I suspect that there may be one or two typos in their lists (as a couple of the points in the final maps are not quite in the same place as they are on Rivet & Smith’s map), but I am not too worried about that for now. The task was then to convert Ptolemy’s coordinates so that they could be plotted onto the OS National Grid.

The first job was to correct for Ptolemy’s underestimate of the circumference of the planet (it was this underestimate that caused Columbus to be so confident about being able to reach the Indies by sailing west, thus accidentally discovering the Americas): to do so, all of the coordinates were first multiplied by 0.798. I then needed to recentre the coordinates so that they related to modern latitude / longitude: I used London / Londinium as a fixed point in both Ptolemy and the modern world, on the assumption that the provincial capital of Britannia ought to be relatively precisely located in Ptolemy’s data. This involved adding 8.41 degrees to each latitude measure and subtracting 16.06 degrees from each longitude measure.

I then created a shapefile in ArcGIS from the coordinate list using the WGS84 projection settings and then reprojected the  map into OSGB 1936, ArcGIS’s representation of the OS National Grid. The points were then filtered out into islands, settlements, and coastline vertices. I had given the coastline points an “order” field (based upon the order of coordinates in Ptolemy) and used the Points to Line tool in ArcGIS to convert them to a line. I then converted the line to a polygon using Feature to Polygon. Finally, a few extra vertices were added to the coastline polygon using the editing tools in order to ensure that the settlement points were all on dry land. Here is the result:

1_Ptolemy_draped

Several things jump out. The most noticeable (and long commented on) is Ptolemy’s rotation of Scotland. Why he did this has been the subject of much debate, possibly being due to him believing that a N-S Scotland would extend too far north or possibly being due to a lack of reliable data on travel times through those non-Imperial lands. The latter is rather key to understanding the Geography: whereas latitude was fairly straightforward to calculate in the past, without chronometers longitude was much more difficult and relied largely upon calculations made using travel time itineraries. We can see the results of this in the way that most of the settlements in England / Wales are reasonably precise in their latitude (N-S) but much more imprecise in their longitude (E-W): York forms a good example. Overall, considering the time when it was constructed, Ptolemy’s Geography contains an impressive representation of Britain (south of Scotland).

I then experimented with a couple of transformations to see if I could improve the plotting onto the National Grid. First, I tried rotating the data so that the north of England more closely aligned with the modern map (actually an affine transformation using London, York and Chester as fixed points, so the geometry is slightly deformed, especially for Scotland):

2_Ptolemy_rotated

The result is not really all that great, as the south of England then becomes much less closely aligned with the modern map. I also tried a rubbersheet transformation, using London as a fixed point and moving Ptolemy’s York onto modern York:

3_Ptolemy_morphed

This turns the map into a really quite close approximation of the modern English / Welsh coastline, with the exceptions of the immense length of the south west and the rather stunted East Anglia. However, as it disturbs the geometrical relationship between Ptolemy’s coordinates, I decided in the end that my first model was probably the best: after all, I could keep adding points to the transformation until everything mapped perfectly onto the modern geography, but what would be the point of that? I would just be recreating the OS map.

This was just a short experiment for the purposes of debate and making a nice map. It seems likely that I may have done something spatially naive in plotting the data using the WGS84 settings, but the end results are rather pleasing in any event.

Chris Green

References

Rivet, A.L.F. & C. Smith. 1979 The Place-names of Roman Britain. London: Batsford.

The maps contain Ordnance Survey data (OpenData). (C) Crown Copyright and Database Right 2016.

Field systems (IV)

This is another post about field systems, following up on my previous work on the subject (I)(II)(III). As stated in my last post on the subject, I now have a dataset of 40 field systems that I have digitised (based upon NMP data) and subjected to various analyses. Some initial results will be discussed below.

fsys_locations

all_fields_imbed

They range in enclosed area from around 2ha to over 1,100ha and cover time periods from the Bronze Age to the Roman period (with a single small section of early medieval reuse in one case). When plotted by time period, the earlier field systems are largely in the south of the country, whereas the Iron Age / Roman ones feature a more comprehensive national spread (the blue “PR” dots represent unspecified prehistoric or possibly Roman field systems):

fsys_period

When classified into rough categories of “coaxial” (meaning essentially rectilinear and perpendicular in character) and “aggregate” (meaning more amorphous), both types of field system occur across the country:

fsys_type

All of these field systems have been subjected to analysis of their morphology, topology (to a limited extent) and landscape character. Probably unsurprisingly, but usefully, field systems with less orientation “peaks” tend towards perpendicularity (y-axis is the difference in degrees between the centres of the first and second peaks on the orientation graphs, the x-axis is the number of peaks on the orientation graphs [5 peaks = 5+ peaks]):

27_fsys_peaks_vs_p1_p2_diff_degrees

Interestingly, the degree of “coaxialty” of each field system appears to have very little to do with how “open” the landscapes are, which suggests that the layout of field systems (particularly in the Bronze Age) did tend towards “terrain blindness” (x-axis is how “coaxial” each field system was from 0 [not at all] to 1 [very]; y-axis is how visually open the enclosed area of each field system is from 0 [very restricted intervisibility] to 1 [high degree of intervisibility]):

34_coaxiality_vs_visibility

One pattern that has emerged is a degree of bias in orientation towards a particular pair of approximate compass bearings around 100-120˚ and 10-30˚ (this graph shows the direction [and strength] of the two strongest orientation peaks from every field system):

16_fs_p1ANDp2

As the graph makes clear, this is not the case across the board, but it is common enough to suggest that there is something going on here. The orientation data was also plotted against the orientation of the aspect of the local terrain, to see if the latter could affect the former (red lines show aspect, black lines field system banks/ditches):

fsys_aspect_vs_coaxiality

As should hopefully be apparent, the aspect of the ground surface can influence the orientation of field systems (especially in the case of FS_id 25, which runs along the side of a fairly steep hill), but not in many cases.

Nationally, these data have been collated by 100x100km OS grid square, alongside orientation data for ridge and furrow, and for unstudied field systems via automated extraction of boundaries. Both of the latter datasets were based purely on the more modern CAD-based NMP projects and processed using automated methods, so the results are based upon more data than my set of field systems, but data that has been less rigorously filtered (numbers record the number of line segments analysed in each square):

coaxiality_by_100km_2

The ridge and furrow data shows a particularly interesting pattern here, with a very common bias towards perpendicular orientations just west of north and just north of east for areas north of the Humber. Hall has noticed this pattern before in Yorkshire, suggesting that it probably is the result of a planned reorganisation of the landscape on a large scale at some time before the C13th (2014:53), but my analysis suggests that this may have occurred over a very substantial area of northern England.

So, what we have here is people in prehistory and the Roman period constructing field systems that were sometimes very regular (“coaxial”) in character and sometimes less so, with the ground surface sometimes having an effect on the orientation and regularity of the field systems, but with field systems also often being laid out in a way that ignored the affordances provided by the ground surface. Often, these field systems were laid out on an orientation that pointed approximately towards a compass bearing of 100-120˚ (and at 180˚ to that, as these lines have no direction) and, to a lesser extent, towards approximately perpendicular alignments. When so-called “open field” systems were created from the later early medieval period, these also show an orientation bias (a different one), particularly north of the Humber.

I suppose that the natural inclination of archaeologists working in their respective time periods would be to find a more ritual explanation for the earlier phenomenon and a more pragmatic explanation for the later phenomenon. This in itself is problematic and one of the reasons why working across traditional time period boundaries (as we are) has the potential to produce new interpretations and understandings. For myself, I am not sure what I think (yet)…

Chris Green

References

Hall, D. 2014. The Open Fields of England. Oxford: OUP.

EngLaId conquers Paris!!

We are very proud of our project artist, Miranda Creswell, whose Paris exhibition in Le CentQuatre (sponsored by NEARCH) opened on 14 February.

The exhibition can be viewed until 30 April 2016.

Screen Shot 2016-02-22 at 16.40.39

For more information:

http://www.104.fr/programmation/evenement.html?evenement=519

(English-language information: http://www.104.fr/english/)

http://www.culture.fr/Actualites/Musee-Expos/Materialite-de-l-Invisible-L-archeologie-des-sens

French artist Nathalie Joffre also deserves a special mention, as her work was to a large degree inspired by a residency in Oxford, where she met and engaged with Oxford-based archaeologists on the Dorchester-on-Thames training excavations.

Finally, also see Tim Dowling’s column in this week’s Guardian – ‘the friend’s exhibition’ is, indeed, this very same event! http://www.theguardian.com/lifeandstyle/2016/feb/20/tim-dowling-valentines-day-paris

Field system orientation (III)

Following on from my previous work on field system orientation (I)(II), I have now finished data gathering for a set of 40 field systems across England, mostly within our case study areas, using data provided by Historic England’s National Mapping Programme. These cover almost 6,000 hectares and represent in part all of our time periods of interest (albeit there is only one early medieval example and even that is reuse of part of a larger prehistoric system). They should provide a decent set of evidence within which we can search for spatial and temporal patterns in prehistoric and Roman field system morphology.

I have gathered a whole series of metrics on these field systems (including dating evidence, length of boundaries, count of boundaries, etc.), which will be drawn upon in our later analyses, but I have started by thinking through orientation further. The set of graphs in the image below show the approximate orientation of field boundaries within each of our 40 field systems. The graphs require a little explanation. They each vary from 0 to 179˚ on the OS National Grid: this means that any axis through the centre of the graph represents 90˚ not 180˚. The black line shows the total length of boundary lines for each degree (relative to the bearing of greatest total length). Each line has been smoothed in order to bring out trends rather than showing the full complexity of the field system.

As such, symmetry along any axis on the graph can be seen as representing a stronger degree of “coaxiality”, as 180˚ on the graph represents 90˚ on the ground. Tighter peaks (so long as there are only two and they fall opposite each other) also represent a stronger degree of “coaxiality”. This provides us with a simple visual aid for assessing how “coaxial” or “rectilinear” a field system is and how each compares to other field systems. In this case, by “coaxial” I mean field systems where the boundaries tend to be orientated along two alignments perpendicular to one another.

all_fields

The variation seen remains to be analysed, to see if there are patterns across time and space, but some tentative initial conclusions can be drawn:

  • Many field systems show strong perpendicular symmetry. This is often also the case with those that did not appear particularly “coaxial” in plan form.
  • Some field systems show no favouritism towards particular alignments, although even these often avoid certain alignments.
  • Currently, there appears to be a bias across the dataset as a whole towards a particular coaxial alignment approximately targeted on NNE/ESE, although this needs further investigation to see if this represents a strong bias in one particular time period or spatial area.

However, we have yet to explore this dataset in its fullest detail, so further work is needed. I will try to report on any interesting patterns seen here in the future.

Chris Green